A moral and ethical
dilemma, systems that fail

by
Dr James A Robertson PrEng

"19 out of 20 ERP implementations fail to deliver what was promised”
according to a Financial Mail survey published some years ago (McCleod
2003). An article published in Computer Business Review Africa a few years
later quoted a Gartner executive as saying that "Most organisations are not
making better decisions than they did five years go" (Technews 2005).

Professor Richard Nolan of Harvard University is reported as saying that
"Information Technology is the next corporate disaster waiting to happen”
(Alter 2006). The indications are that as many as 70% of corporate
business system investments fail to deliver anything material at all when
viewed from a commercial and strategic standpoint (Robertson 2004).

For those who are listening attentively there are a significant nhumber of
reports of massive I.T. write off's by big hame corporations yet silence and
the "Delete" key have become the most effective tools in disposing of failed
investments that the world has ever known.

If buildings, bridges, factories or large ships failed at the rate that business
information systems fail to function to specification, or fail to function
outright, technologically based society in the shape that we know it today
would never have reached anything approaching the level of sophistication
that we know today.

One can argue that without computers we would not have reached the
current levels of technological sophistication that are currently experienced,
however, much of the computer software that has enabled this
sophistication has been developed by specialist software engineers
operating to a different set of standards to those that are applied to general
commercial software.

Furthermore, much of the core technical functionality that exists in business
software is fundamentally unchanged from that which existed two or even
three decades ago. The average user of word processing software today
probably uses the same or less functionality than that which was used a
decade or more ago. The software may be considerably more functionally
obese than it was then but the basic capturing of text on paper as a more
sophisticated replacement for the typewriter has not changed much and



most users are making much less use of macro's and other productivity aids
than they did a decade or two ago.

Compounding the dramatic failure rate of business information system
investments we find ourselves confronted with wholesale forced
obsolescence and apparent failure of software that is functioning entirely
satisfactorily. The software industry is the only industry in the world that
has successfully granted itself a license to demolish and destroy what it
sells when there is no technical basis to do so. Most software is forcibly
discarded after a service life of about three to seven years or less unless
customers pay extortion money (license fees) in order to be entitled to
purchase upgrades they often do not need that frequently are costly and
time consuming to install. While many of these upgrades may include
added features and benefits which some users may find of value, many
contain significant repairs to latent defects in the original product.

Marketing hype suggests that old versions of software may not run on
current computers yet it is a fundamental reality that last year's software
will ALWAYS run on this year's hardware because this year's software
cannot exist until the hardware to run it has been manufactured. So
software creation always lags hardware. By logical extension of this
principle, it is theoretically technically possible to run software that is many
years old on new processors and, in practice, this will be found to be the
case. I regularly write documents (including this article) using word
processing software thatis 16 years old notwithstanding the fact that I have
been told by computer sales people for close to a decade that this DOS
character based software will not run under Windows.

In this particular case there are some features that no longer function for
valid practical reasons and which I choose to live with and there are some
foibles that result from conscious choices that some human being has made
to deviate from an established standard at the expense of backward
compatibility. Butthe most interesting thing about this software is that the
most recent version of this software offers a compatibility mode and
keyboard option that emulates the 16 year old software a reflection of a
commitment to customers that has cost the company concerned the market
leadership position that it once held.

As a matter of interest I continue to use the old software because I am so
familiar with the function keys that I do not have to think in order to use
them and they are faster to use. The inconvenience and time wasted to
learn new software is simply not warranted and the content is the same
whatever tool I use.

And so we find that old software fails under new versions of the best
marketed operating system not through a fundamental tendency towards



mechanical failure but through a lack of interest in maintaining consistency
of standards which has the interesting effect of making the perpetrators
much more profitable than they would otherwise be.

The harsh reality is that individuals and corporations who would not think
twice about contacting their attorney's if confronted by failure of this
magnitude in any other area of business and life generally meekly pay up
to replace software that is dysfunctional at best through negligence and at
worst through intentional design while the application software is actually
still fully functional. In the process of doing this organizations accept that
huge investments in the training of personnel are summarily trashed in a
manner that is demoralizing and demotivating to any staff member who has
made a real effort to develop more than minimal skills with the current
version.

As a consequence with the next version staff make less effort to learn how
to use advanced functionality and become more inclined to dabble.

Returning to the subject of forced obsolescence there is an interesting legal
principle termed "the right to maintain and repair" which originated in the
motor industry many years ago and which, as far as I can ascertain, forms
the basis of the so-called “pirate parts” industry in the motor trade. The
essence of this principle is that when one purchases a product one has the
right to maintain and repair and therefore use that product for as long as
one chooses to do so.

The practical implication of this principle is that if a motor manufacturer
ceases to manufacture exhaust pipes for your motor car they axiomatically
void their intellectual property rights to the extent that is required for you
to have a third party manufacture an exhaust pipe to the original
specification or such other specification as you deem appropriate. The
principle says nothing about the economic or mechanical practicality of
doing this, it simply states that you have the right to do it.

What is also interesting about this principle is that as far as my casual
inquiries have revealed, most attorney's know of the principle but it appears
that there is only one case on record relating to its application. It would
appear that the principle is so intuitively sound that no one has ever seen
fit to contest it since it was first adjudicated in the House of Lords many
decades ago in the context of motor vehicle exhaust pipes.

What has this to do with software failure?

As far as I can see a huge amount.



Essentially, the right to maintain and repair says that if a software
developer ceases to support a version of their software which you have
legally purchased then you are entirely within your rights to have a third
party maintain and repair that software for as long as you consider it
appropriate and are willing to pay what it costs to procure this maintenance.
Since the precedent appears to clearly indicate that intellectual property
rights are void to the extent necessary to maintain and repair the software
this seems to me to indicate that you are entirely entitled to demand the
source code for no more than the reasonable cost of making a copy for your
use. The only real question would appear to be whether anyone has the will
and legal resources to consider taking the necessary measures to establish
a precedent in the software business.

Turning to the high level of business information system implementation
failure and sub-optimal outcomes we find ourselves faced with another
interesting phenomenon. One of the reasons why "19 out of 20"
implementations do not deliver what was promised, that is fail to deliver,
is that much of what is promised is in the realms of human ability or even
in the realms of the super human. We are promised that software will do
things that only people can do and in many cases that not even people can
do. IT. marketing hype propagates beliefs in the most remarkable
outcomes and creates the impression that companies that implement the
software concerned will achieve levels of efficiency and effectiveness that
can be achieved with no other software.

The harsh reality is that computer systems, like guns, are value inert. A
gun held by someone you consider to be good and pointed at someone you
consider to be bad is "good" while a gun that is pointed at you is "bad".
computer software is much the same. Well designed and well implemented
software used by well trained and well motivated staff is "good", otherwise
it is bad (fails).

This problem is compounded by the names we use. Careful inspection of
the software commonly referred to as "Enterprise Resource Planning"
(E.R.P.) software will reveal that in most organizations where software with
this label is deployed the software being applied in practice comprises
basically the same modules as were employed in "Accounting Systems" in
the late 1980's and "Management Information Systems" in the 1990's.
There has been an exponential increase in the functionality that exists and
accordingly there has been an exponential increase in the complexity and
cost associated with implementing this software but in essence orders still
get placed, suppliers still get paid, products get sold and paid for and all
these transactions end up with one leg in the General Ledger.

In all cases the name of the product, supplier, customer, staff member, etc
comprises the identical pattern of binary 0's and 1's that has applied for



decades to the words in question in electronic form and the numeric values
of the data have also been expressed in exactly the same way for decades.
So, in practical terms, there is a limit on how much more value one can add
to the data and therefore one is faced with a huge conundrum as to the
basis on which one can justify the real cost of trashing systems that are five
or ten years old or even fifteen or twenty years old and which are getting
the job done.

Yes one may well find ways of extracting value by adding new modules and
new functionality that work with the existing data. And in most cases one
can almost certainly release substantial value by improving the quality and
the classification of the data and reimplementing the existing software but
telling a customer with five year old software that they have to replace it
on the grounds of obsolescence requires careful consideration.

Then there is the question of head count reduction which is frequently used
to justify large system investments. The challenge is that frequently the
head count reduction does not materialize and, in fact, an increase in
headcount and reduction in overall efficiency is experienced. Added to this
there is the moral dilemma of the ethics of eliminating jobs in a nation
where unemployment is severe and job creation is supposedly a priority.

So where does this leave us?

By now you may well be thinking that I am opposed to all things that relate
to computers and that what I am advocating constitutes a threat to all that
any worthy computer "geek" holds dear.

Far from it :)

I have devoted most of my career to the application of computers in
business. In fact I have spent the last nineteen years seeking to find ways
of achieving high levels of reliability and sustainability in the design and
implementation of business computer systems. Something that I refer to
as "an engineering approach"” -- an approach which aspires to have the
same level of success as we take for granted from engineering structures.

You may recall the bridge failure in the USA last year which made headlines
around the world within minutes of its occurrence?

Why?
Because the failure of bridges is so extremely infrequent.

Why? Because engineers do NOT design bridges to stand up -- they design
them NOT to fall down.



What is the difference?

There is a fundamental difference in mind set required to design a bridge
NOT to fall down as opposed to designing a bridge. The first step in this
change in attitude is to recognize that "falling down" is the natural state of
things generally and bridges in particular. Just like failure is the natural
state of business software investments.

So, the first thing we need to do in order to achieve software success is to
prevent the epidemic level of software failure and the first thing we need
to do in order to achieve this objective is to acknowledge that failure is
indeed epidemic and then to CHOOSE to consciously and actively work to
PREVENT failure.

This requires that we understand all the factors that cause failure and work
to eliminate them from our projects. This is not a mystical or magical
endeavour, the factors that cause failure are mundane and mostly quite
easy to recognize. They are:

Information technology mythology (30%)

Lack of executive custody and inappropriate policies (20%)
Lack of strategic alignment (15%)

Lack of an engineering approach (12%)

Poor data engineering (10%)

People / soft issues (8%)

. Technology issues (5%)

NOUTRWN

(Robertson 2004)

What you will notice is that only 5% of what causes failure relates to
technology, 95% relates to factors which have to do with things that people
do and think and 30% relates to the tendency to ascribe human and super-
human attributes to binary adding machines which only approximate human
ability to the extent that human beings are able to interpret and anticipate
applications that simulate what human beings are able to do.

To return to the position that I am advocating. Not only am I advocating
preventing failure, I am advocating preventing failure in a manner that
delivers high sustainable strategic value, that is value that facilitates and
supports the organization to thrive.

If we look at the real cost of failed projects coupled with the high ongoing
cost of sub-optimal projects, those projects that failed to deliver on a real
valid and valuable business case that delivers lasting economic benefit, I
submit that the real cost of the few projects that succeed is far higher than
is recognized and that accordingly we should recognize the real cost of



success AND the high value of truly successful investments and then act
appropriately.

Once we are clear on the real cost and real value of real success we can
decide either to stabilize and expand our existing systems or to invest in
new systems. Once we are clear on the real cost of a new system we may
well be willing to invest heavily in our existing systems and once we do this
in concert with a robust requirement for vendors to honour the principle of
our right to maintain and repair our systems for as long as we desire we
may well see a very different perspective on the way we operate our
business systems investments be it our office automation software or be it
our accounting systems or extended accounting systems (E.R.P. systems).

The essential prerequisite for this approach is a change in attitude on the
part of the client and the I.T. practitioner. I would like to see the change
in attitude originate from the profession, in practice it will probably be a
combination of change from both sides. In its simplest and harshest form
this change might look like a meeting that I facilitated on behalf of a client
some years ago after they had been informed that the supplier was going
to discontinue support for their version (let us call it xx) of the software and
that they should accordingly prepare to spend a considerable sum of money
and incur considerable business disruption upgrading to a new version
which it appeared there was no strong business case to recommend.

The conversation went something like this:

Supplier: "We are discontinuing support for version xx from the end of
next year so we need to start making plans for you to upgrade.”

Client: "We do not want to upgrade, we want the source code for
version xx and a five year support contract for version xx
renewable for five years."

Supplier: "Sorry, perhaps we did not make ourselves clear, we are
DISCONTINUING version xx."

Client: "There is a legal principle called "the right to maintain and
repair” and in terms of this we want the source code and a
renewable support contract.

"And we are willing to take this to court."

Supplier: "In that case we will have to speak to our principals."

A few weeks later the supplier returned with a quote to supply the source
code and a draft five year support contract renewable for five years. We did



not particularly like the dollar amounts for either item but they were a lot
more attractive than the real cost of scrapping the current version and
provided a basis for negotiation.

I would prefer there to have been NO NEED for the conversation in the first
place and for the supplier to have automatically offered to continue
supporting version xx on an ongoing and open ended basis.

Your response to this suggestion may be that it is "impractical" and
unreasonable to expect vendors to maintain support for "obsolete" versions
at numerous sites indefinitely to which I suggest that the obvious reply is
that this is done for buildings, oil refineries and numerous other large and
expensive systems of greater tangible complexity and greater overall cost
than business computer systems and that if we considered the true cost of
trashing thousands of person hours of work implementing new systems
every few years we might find that the economics would in fact favour the
approach that I am advocating here very considerably.

Taking this full circle to where this discussion started, the unacceptably high
level of software failure, I suggest that we now find that there is a perfectly
sound economic basis to do the job properly.

In actual fact, in broad terms we know how to do the job properly.

The biggest problem is that too many people lie about the real cost of doing
the job because of sales targets and short terms budgets and because there
is not an awareness of the real cost of failure.

One option is for the customer to become a lot tougher, which, incidentally,
requires the customer to become a lot more thorough and a lot more
realistic about the real cost of doing the job right first time.

The other option is for the industry to take voluntary measures to clean up
its act.

I recently encountered an outstanding example of the tougher customer
approach. The customer spent a year compiling a set of three hundred
reference documents together with a tightly structured contract and
appointed the attorney who drafted the contract to sit on the project team.
The project came in on time and under budget and met all business
expectations. In fact, it came in so far under budget that the company paid
material cash bonuses to all the staff involved with the project!

The thought that I would like to leave you with at this conference on I.T.
Improvement is that it is time for all those who practice in the field of the
art and science of business information systems and who aspire to complete



projects on time and on budget that meet customer expectations and who
are willing to bite the bullet of being honest about the real costs and willing
to take stands with regard to dealing with integrity and in the best long
term interests of the customer to join forces to establish a peer moderated
professional body that will eventually seek statutory powers to licence and
moderate the practice of professional information technology practitioners
in the various major fields of I.T endeavour.

REFERENCES
Alter, Allan (2006) Richard Nolan: A Committee of One's Own
Z i ff D avis CIO: I nsight,

http://www.cioinsight.com/print_article2/0,1217,a=119427,00.asp,
13 September 2006

McLeod, Duncan (2003) The I.T. Industry, Time for a Reboot
Financial Mail, Johannesburg, 28 March 2003

Robertson, James A (2004), The Critical Factors For Information
Technology Investment Success, Johannesburg, 2004

Technews (2005) Business Intelligence
net.work, The Way Business is Moving,
http://www.networktimes.co.za/news.aspx?pkiNewsId=17372&pkIC
ategoryID=204, May 2005

The Author

Dr James Robertson is the founder and CEO of James A Robertson and
Associates an independent specialist I.T. advisory service provider and can
be contacted on ++27-(0)83-251-6644 or James@JamesARobertson.com



mailto:James@JamesARobertson.com

